💻
RAG and LLM Bootcamp
  • Welcome to the Bootcamp
    • Course Structure
    • Course Syllabus and Timelines
    • Know your Educators
    • Action Items and Prerequisites
    • Kick-Off Session for the Bootcamp
  • Basics of LLMs
    • What is Generative AI?
    • What is a Large Language Model?
    • Advantages and Applications of LLMs
    • Bonus Resource: Multimodal LLMs and Google Gemini
  • Word Vectors, Simplified
    • What is a Word Vector?
    • Word Vector Relationships
    • Role of Context in LLMs
    • Transforming Vectors into LLM Responses
    • Bonus: Overview of the Transformer Architecture
      • Attention Mechanism
      • Multi-Head Attention and Transformer Architecture
      • Vision Transformers (ViTs)
    • Bonus: Future of LLMs? | By Transformer Co-inventor
    • Graded Quiz 1
  • Prompt Engineering and Token Limits
    • What is Prompt Engineering
    • Prompt Engineering and In-context Learning
    • For Starters: Best Practices
    • Navigating Token Limits
    • Hallucinations in LLMs
    • Prompt Engineering Excercise (Ungraded)
      • Story for the Excercise: The eSports Enigma
      • Your Task fror the Module
  • RAG and LLM Architecture
    • What is Retrieval Augmented Generation (RAG)?
    • Primer to RAG: Pre-trained and Fine-Tuned LLMs
    • In-context Learning
    • High-level LLM Architecture Components for In-context Learning
    • Diving Deeper: LLM Architecture Components
    • Basic RAG Architecture with Key Components
    • RAG versus Fine-Tuning and Prompt Engineering
    • Versatility and Efficiency in RAG
    • Key Benefits of using RAG in an Enterprise/Production Setup
    • Hands-on Demo: Performing Similarity Search in Vectors (Bonus Module)
    • Using kNN and LSH to Enhance Similarity Search (Bonus Module)
    • Bonus Video: Implementing End-to-End RAG | 1-Hour Session
    • Graded Quiz 2
  • Hands-on Development
    • Prerequisites (Must)
    • Docker Basics
    • Your Hands-on RAG Journey
    • 1 – First RAG Pipeline
      • Building with Open AI
      • How it Works
      • Using Open AI Alternatives
      • RAG with Open Source and Running "Examples"
    • 2 – Amazon Discounts App
      • How the Project Works
      • Building the App
    • 3 – Private RAG with Mistral, Ollama and Pathway
      • Building a Private RAG project
      • (Bonus) Adaptive RAG Overview
    • 4 – Realtime RAG with LlamaIndex/Langchain and Pathway
      • Understand the Basics
      • Implementation with LlamaIndex and Langchain
  • Final Project + Giveaways
    • Prizes and Giveaways
    • Suggested Tracks for Ideation
    • Sample Projects and Additional Resources
    • Submit Project for Review
Powered by GitBook
On this page
  1. Hands-on Development

Your Hands-on RAG Journey

PreviousDocker BasicsNext1 – First RAG Pipeline

Last updated 10 months ago

By now we know what RAG is and we’ve seen the architecture diagram above. It’s a simple implementation of a Basic RAG service that helps you build LLM applications.

Now we’ll build our projects in 4 parts.

  1. You'll first build a RAG project using Open AI APIs. We'll then help you use APIs by Gemini, Replicate, etc. for the same basic RAG use-case.

  2. Next, you'll see how you can APIs as a data source to build a RAG project.

  3. After that, you'll see how you can build RAG projects using open source models, so all the data stays within an enterprise itself. You'll combine it with the use of an Adaptive RAG technique that reduces the costs by 4x without affecting the accuracy.

  4. Lastly, you'll see an example where we pick LlamaIndex or Langchain along with Pathway as a vector store / retriever.

In all the cases, we'll leverage Pathway – the world's fastest data processing engine and a framework that helps you in-memory incremental vector index that is production, easy-to-scale, and open source!

Let’s get started with the first one.