💻
RAG and LLM Bootcamp
  • Welcome to the Bootcamp
    • Course Structure
    • Course Syllabus and Timelines
    • Know your Educators
    • Action Items and Prerequisites
    • Kick-Off Session for the Bootcamp
  • Basics of LLMs
    • What is Generative AI?
    • What is a Large Language Model?
    • Advantages and Applications of LLMs
    • Bonus Resource: Multimodal LLMs and Google Gemini
  • Word Vectors, Simplified
    • What is a Word Vector?
    • Word Vector Relationships
    • Role of Context in LLMs
    • Transforming Vectors into LLM Responses
    • Bonus: Overview of the Transformer Architecture
      • Attention Mechanism
      • Multi-Head Attention and Transformer Architecture
      • Vision Transformers (ViTs)
    • Bonus: Future of LLMs? | By Transformer Co-inventor
    • Graded Quiz 1
  • Prompt Engineering and Token Limits
    • What is Prompt Engineering
    • Prompt Engineering and In-context Learning
    • For Starters: Best Practices
    • Navigating Token Limits
    • Hallucinations in LLMs
    • Prompt Engineering Excercise (Ungraded)
      • Story for the Excercise: The eSports Enigma
      • Your Task fror the Module
  • RAG and LLM Architecture
    • What is Retrieval Augmented Generation (RAG)?
    • Primer to RAG: Pre-trained and Fine-Tuned LLMs
    • In-context Learning
    • High-level LLM Architecture Components for In-context Learning
    • Diving Deeper: LLM Architecture Components
    • Basic RAG Architecture with Key Components
    • RAG versus Fine-Tuning and Prompt Engineering
    • Versatility and Efficiency in RAG
    • Key Benefits of using RAG in an Enterprise/Production Setup
    • Hands-on Demo: Performing Similarity Search in Vectors (Bonus Module)
    • Using kNN and LSH to Enhance Similarity Search (Bonus Module)
    • Bonus Video: Implementing End-to-End RAG | 1-Hour Session
    • Graded Quiz 2
  • Hands-on Development
    • Prerequisites (Must)
    • Docker Basics
    • Your Hands-on RAG Journey
    • 1 – First RAG Pipeline
      • Building with Open AI
      • How it Works
      • Using Open AI Alternatives
      • RAG with Open Source and Running "Examples"
    • 2 – Amazon Discounts App
      • How the Project Works
      • Building the App
    • 3 – Private RAG with Mistral, Ollama and Pathway
      • Building a Private RAG project
      • (Bonus) Adaptive RAG Overview
    • 4 – Realtime RAG with LlamaIndex/Langchain and Pathway
      • Understand the Basics
      • Implementation with LlamaIndex and Langchain
  • Final Project + Giveaways
    • Prizes and Giveaways
    • Suggested Tracks for Ideation
    • Sample Projects and Additional Resources
    • Submit Project for Review
Powered by GitBook
On this page

Hands-on Development

PreviousGraded Quiz 2NextPrerequisites (Must)

Last updated 10 months ago

Welcome to the final learning module of this bootcamp, after which we'll head towards building our project that leverages the power of open source, RAG, and LLMs!

Here, we're going to guide you through the process of setting up a Retrieval Augmented Generation (RAG) application. While you're working with the tools, consider starring them on GitHub. It is an effortless way to bookmark it for future and track updates, and it also helps the community discover the resource.

  • Link to the LLM App GitHub repository:

  • Link to the Pathway GitHub repo:

By the end of this module, you'll be able to build your LLM application that works with realtime data. This implementation guide is aimed at users of Mac, Linux, and Windows systems.

Note: If you have already completed your first project by consulting the documentation on the LLM App's open-source repository, that's excellent! In that scenario, you may choose to review the videos in this module for additional perspective and proceed to the '' module.

💪
https://github.com/pathwaycom/llm-app
https://github.com/pathwaycom/pathway
Final Project + Giveaways