đź’»
RAG and LLM Bootcamp
  • Welcome to the Bootcamp
    • Course Structure
    • Course Syllabus and Timelines
    • Know your Educators
    • Action Items and Prerequisites
    • Kick-Off Session for the Bootcamp
  • Basics of LLMs
    • What is Generative AI?
    • What is a Large Language Model?
    • Advantages and Applications of LLMs
    • Bonus Resource: Multimodal LLMs and Google Gemini
  • Word Vectors, Simplified
    • What is a Word Vector?
    • Word Vector Relationships
    • Role of Context in LLMs
    • Transforming Vectors into LLM Responses
    • Bonus: Overview of the Transformer Architecture
      • Attention Mechanism
      • Multi-Head Attention and Transformer Architecture
      • Vision Transformers (ViTs)
    • Bonus: Future of LLMs? | By Transformer Co-inventor
    • Graded Quiz 1
  • Prompt Engineering and Token Limits
    • What is Prompt Engineering
    • Prompt Engineering and In-context Learning
    • For Starters: Best Practices
    • Navigating Token Limits
    • Hallucinations in LLMs
    • Prompt Engineering Excercise (Ungraded)
      • Story for the Excercise: The eSports Enigma
      • Your Task fror the Module
  • RAG and LLM Architecture
    • What is Retrieval Augmented Generation (RAG)?
    • Primer to RAG: Pre-trained and Fine-Tuned LLMs
    • In-context Learning
    • High-level LLM Architecture Components for In-context Learning
    • Diving Deeper: LLM Architecture Components
    • Basic RAG Architecture with Key Components
    • RAG versus Fine-Tuning and Prompt Engineering
    • Versatility and Efficiency in RAG
    • Key Benefits of using RAG in an Enterprise/Production Setup
    • Hands-on Demo: Performing Similarity Search in Vectors (Bonus Module)
    • Using kNN and LSH to Enhance Similarity Search (Bonus Module)
    • Bonus Video: Implementing End-to-End RAG | 1-Hour Session
    • Graded Quiz 2
  • Hands-on Development
    • Prerequisites (Must)
    • Docker Basics
    • Your Hands-on RAG Journey
    • 1 – First RAG Pipeline
      • Building with Open AI
      • How it Works
      • Using Open AI Alternatives
      • RAG with Open Source and Running "Examples"
    • 2 – Amazon Discounts App
      • How the Project Works
      • Building the App
    • 3 – Private RAG with Mistral, Ollama and Pathway
      • Building a Private RAG project
      • (Bonus) Adaptive RAG Overview
    • 4 – Realtime RAG with LlamaIndex/Langchain and Pathway
      • Understand the Basics
      • Implementation with LlamaIndex and Langchain
  • Final Project + Giveaways
    • Prizes and Giveaways
    • Suggested Tracks for Ideation
    • Sample Projects and Additional Resources
    • Submit Project for Review
Powered by GitBook
On this page
  1. Prompt Engineering and Token Limits

What is Prompt Engineering

Have you ever wondered how to get more accurate and tailored results from a Large Language Model?

Enter the world of in-context learning. In simple terms, in-context learning allows a model to understand and adapt based on the information you feed it. The more context you provide, the more refined the output.

Unpacking Prompt Engineering

So, where does prompt engineering fit in? Think of prompt engineering as the art of crafting these pieces of context in a way that guides the model toward the desired outcome. It’s essentially in-context learning itself and your direct channel of communication with the model. You can present your problem statements in two broad ways—either with minimal context, known as zero-shot or one-shot prompts, or with additional guiding context, called few-shot prompts.

However, for now, you can park the jargons and realize that each prompting approach has its strengths and limitations, but the aim is the same: to pull the most precise responses out of the LLM.

PreviousPrompt Engineering and Token LimitsNextPrompt Engineering and In-context Learning

Last updated 11 months ago